TURBULENT FLOW OF DILUTE EMULSIONS
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An equation is obtained to determine the coefficient of hydraulic drag of dilute emulsions by
using the turbulent viscosity concept and the phenomenon of quenching turbulent pulsations.
The results of the theory are compared with experiment.

If some mass of fluid is incident in a turbulent stream which does not mix with the fluid and has a
sufficiently high degree of turbulence, then fractionation of this fluid under the effect of the turbulent pul-
sations occurs [1-3]. In this case a dilute emulsion is formed for a low content of the dispersing fluid.
The least diameter of the droplets of such an emulsion will exceed the internal scale of the turbulent pul-
sations and can be determined as a function of the intraphasal tension ¢, the density of the dispersion
medjum p,, the inner diameter D of the pipe, and the mean flow velocity w by means of the Kolmogorov
formula [2, 3]

d=21/§(")3"”ﬂ5— (1)

kpy) 887

where k = 0.5 is the drag coefficient for flow around a drop.

The viscosity conception developed in the Millionshchikov semiempirical theory of turbulence [4-6]
is used to describe the turbulent flow of dilute emulsions; hence the influence of the dispersed fluid on the
coefficients of dynamic u, and turbulent y, viscosity of the emulsion is taken into account,.

Dilute emulsions behave similarly fo simple fluids and are subject to the Newton and Poiseuille laws.,
Let us write the equation of motion of dilute emulsions in a pipe as

- du 2
{he— x“te)(,y w T, (2)

where u and T are the velocity and tangential stress at a distance y from the pipe wall, Under the assump-
tion of axial symmetry, the tangential stress at the given section is related to the tangential stress at the
wall 7, by

T:Tﬁ)(l - yl))s

where y, is the dimensionless distance from the wall defined by the ratio between y and the pipe radius r,
le., yy=y/r.

The influence of dispersed fluid globules on the coefficient of dynamic viscosity of a dilute emulsion
is manifest in the fact that the dynamic viscosity of the emulsion itg increases with the growth in the content
of the dispersion phase g which exceeds the viscosity of the dispersion medium tg. Brinkman {7] obtained

wa=p(1 — f)—2° (3)

for the case when the drops move independently.
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TABLE 1. Physical Properties of Fluids at a Temperature 0f20°C

. . Kinematic vis- 'Interphasal tension on the
Working fluid o 3 Density, kg/m® | transformer oil—water inter-
cosity, m“/sec | face, N/m
Water 1,7-107¢ 998 44,8-1073
Transformer oil 24,3.107¢ 896 ‘

*The surfactants in transformer oil are asphalt-resins,

For dilute emulsions, (3) yields good agreement with test data and can be used in the motion equa-
tion (2).

For flows of emulsions in a pipe the scale for the pulsation velocities in the region of developed
turbulence is the dynamic velocity corresponding to the tangential stress at a given radius [4-6]:

U*Z,ezv*,elfl — Yo (4)

where vyg = V7w/p e is the dynamic velocity, The density of the emulsion pg is hence determined additive-
ly pg = p1 (1~ B) +pyB, where p, is the density of the disperse phase.

Equation (2) can be represented as

(v + vy G = vhell —u0) =vhe, (5)

where v, is the coefficient of kinematic viscosity of the emulsion (vg = He/De); Vie is the turbulent kine-
matic viseosity (Vi = ute/ne).

Let us define the turbulent kinematic viscosity as the product of the dynamic velocity viye at a given
radius and the mixing path /.

Vie=Dryele (6)
Then taking account of (4) and (6), Eq. (5) becomes
(ve+veele VT —y,) 5o = vh ol — 1),

It is seen from this equation that for sufficiently high values of the Reynolds number when the vis-
cosity can be neglected, a change in /g along the radius in conformity with the formula

le=aely — 5A)V1 — Yo»

corresponds to the logarithmic profile, where a,, is a dimensionless coefficient and &, is the thickness of
the laminar sublayer. For single-phase fluids the value of the dimensionless coefficient and the laminar
sublayer thickness are determined in [4-6] on the basis of processing experimental data: a = 0 for laminar
flow, a = 0.39 for developed turbulent flow, and 6 = v« /v = 7.8,

The influence of globules of dispersed fluid on the turbulent kinematic viscosity is manifest in the
diminution of the mixing pathlength as compared with the turbulent flow of a single-phase fluid.

Sinee a film of surfactants adsorbed on the fluid interface hinders penetration of the pulsating mo-
tions within the globules, then the diminution of the mixing pathlength during turbulent flow of an emulsion
is determined, firstofall, by a diminution in the volume in which turbulent energy dissipation occurs (it is
necessary to eliminate the volume occupied by the globules of dispersed phase from the total volume of
the turbulent stream core), i.e., the factor (1 — p) should be introduced in the dimensionless coefficient
of the mixing pathlength. Moreover, since the dimension of droplets of the emulsion under consideration
exceeds the internal scale of turbulence of the dispersion medium 2,, some quenching of the turbulent pul-
sations occurs on the surface of these droplets. If it is considered that complete quenching of the turbulent
pulsations occurs in the dispersion medium in an emulsion with close packing of globules of diameter dp,
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such that the clearance between them does not exceed X;, then the efficiency of quenching the turbulent
pulsations on the surface of dilute emulsion globules can be taken into account by the factor (1 — 8/8,) to
the dimensionless coefficient of the mixing pathlength, where S/Sp is the ratio between the interphasal
surfaces of the dilute and most compact emulstions, Therefore

ae=0.39(1 — B) (1 — S/Sp).

The fraction of dispersed phase by volume for the closest arrangement of globules in the compact
emulsion is Bp =741 [8].

Hence

S _ B dp, (7)
Sp 0.741 4
Examining the model of the closest globule arrangement, we find from geometric representations
thatthe greatest dimension of the clearance between globules ish = 0.365dp. The internal scale of turbu-
lence of the dispersion medium A, is determined from the condition that the Reynolds number for motion
of the scale A is one 13]:

o D (2
0 Rei://t wpy |

Equating h and A, we find that

1/3 34
dp — 2.74(9——”—1) . (8)

wPy
Substituting (1) and (8) into (7), we obtain
§/Sp=0.863p3%5,

where M = fw’/ D/J1(74 is a dimensionless parameter.

Consequently, we finally have for the dimensionless coefficient of the mixing pathlength

ag=0.39(1 — B) (1 — 0.863pM°15), 9)

The laminar sublayer thickness can evidently be considered analogously to a single-phase fluid 6 =

Vi 6A/Ve =738,
e
Therefore, the equation of motion of a dilute emulsion in a pipe becomes

d“/U*e
dyy =1- Yor

[be - ae (yo—8y) (1 — Yol

where
be=Ve/rvve, 8o=04/r,a =0 for y,< 8,
2e=0.39(1 — B) (1 —0.863pM°1%) for. y, > §,.

Integrating this equation taking account of a smooth merger with the laminar sublayer, we have

1 Vs ,
;je=-b;(yo———.}} for y, <8y, (10)
LI ¢ 1=80y, VAL (29— 1+ 81} [VE — (8 — )] \
= : In 1—}——-ﬁ(y-——6) {—y :i_}_ 0] 2 Yo o (6o ) ]_,_ ( _____{5__
vre Z“e{ [ pe o S ) | S e o a6 =T ) T

. - , _
for Yo > 8p,where]) A = 'l/ 4% (1 — 8,2

The formulas (10) yield the velocity distribution over the whole range of variation of y; between 0
and 1, where the condition du/dy = 0 is satisfied on the pipe axis, ie., for y,=1.

The drag coefficient for an emulsion flowing in pipes is defined by the formula
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e —2D 8 _ (__) |
; > . | he=2-7 pewz—S ==],
0,022 \\& -
, where Ap is the pressure drop in a length L,
s020 1 \Q\g\{u\ p p P g
\o\g\ The mean value of the velocity is determined by the integral
* 0,018 »
i
0,016 w= Zj‘(l—yo) udy,.
4,4 4,5 4,6  lgReg 0
Fig. 1 Integration is hence separated into two sections, from 0 to

8y, where ae = 0 and from §, tol, where a,, is defined by means of
(9). Following [4-6], in the integration between §; and 1 we use the replacement of (10) for this interval by
the expression

v+

A —tin [1—]_ %(yo—ﬁo)] 48— F (yy/be,
ae e

" which differs from (10) for small values of bg by just the small correction f(yo/be) which appears just near
the pipe axis,

The formulas for w/vse and Ae are

1 1 2 3 Géj b2 o 3 ) 1
.= T Rede= re<50*50+ T, t 3 (ma— ) +2a —g|+i—s (11)
.
he= Reebe)z’
2
where
'LL‘.Dp. a
Re = “ee, a=1 +b—:(1—60),

£ is a small correction related to the function f(y,/bg) which can be neglected in practice. Formulas (11)
yield a parametric dependence between Reg and A, where by is the parameter,

Experimental investigations to determine the hydraulic drag coefficient A, were conducted on an ap-
paratus described in [9] for the flow of a dilute transformer oil emulsion in waterin a 39.4-mm-diameter
pipe at a temperature of 19+ 1°C,

The fluids whose physical properties are presented in the table were delivered to the experimental
section by extrusion by air from reservoirs so that the formation of the emulsion in the pipeline occurred
only under the effect of turbulent pulsations,

Given in Fig, 1 is a comparison between the results of experiments and computations using (11) for
an emulsion with a g = 0.1 dispersed phase content, Curve 2 shows the drag law for a pure fluid. It is
seen that the drag coefficient for a dilute emulsion (curve 1) is substantially below that for the pure fluid,
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